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Abstract-In this paper we present both experimental measurements and a theoretical model for the thermal 
conductivity of a consolidated mixture of two-metal powders. Measurements were made on samples of 
different mixture volume fractions at consolidations ranging from loose powder to above 90% theoretical 
density, using both air and water as saturants. We have applied the technique of volume averaging to produce 
working equations applicable to the general problem of thermal conduction through mixtures. Predictions 
made using these equations show good agreement with published two-phase data from a wide variety 

of sources. 

1. INTRODUCTION 

GRANULAR materials, both consolidated and un- 
consolidated, comprise an important class of constitu- 
ents in modern engineering technology as well as 
in geophysical systems. Such constituents are found 
in explosives, chemical reactors, ceramics, and in 
naturally occurring soils and rocks, to name only a few. 
These composites range in complexity from relatively 
simple binary systems of packed spherical particles to 
agglomerates consisting of several irregularly-shaped 
constituents held together by porous cementing 
materials. Thus, modeling ofmixtures continues to be a 
challenging endeavor of considerable complexity. 

In this paper we describe an experimental and 
theoretical study of the conductive transfer of heat 
through those granular materials which may in some 
sense be considered ‘random’. Thus we are leaving out 
laminar composites or systems with some built-in 
symmetry. In particular, we primarily will treat packed 
metal powders, although some theoretical com- 
parisons with other granular data are presented. This 
specialization is made in an attempt to model a system 
whose components are well known and characterized. 
Thus the emphasis in this work will be on the 
development of theoretical models to predict the ther- 
mal conductivity of mixtures, rather than on measure- 
ments of systems of a particular practical interest. 

The simple binary system consisting of uncon- 
solidated (uncemented) particles of various shapes 
surrounded by a single pore fluid has been the subject of 
considerable study, resulting in a significant data base. 
This data is usually presented as plots of k,,,/k, vs 
K = k,Jkf, where k,, is the effective conductivity of the 
mixture, k, the matrix conductivity, and k, that of the 
pore fluid. Recent work by Nozad et al. [l] has 

*This work performed at Sandia National Laboratories 
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extended the range of K to near lo4 while providing a 
convenient synopsis of earlier work. Many theoretical 
models for the binary granular mixture have been 
proposed, ranging from empirical models [2] to the 
more fundamental work of Batchelor and O’Brien [3] 
and Jeffrey [4]. The reader is referred to Woodside and 
Messmer [S] for a good review of the modeling in this 

area prior to 1960. 
For more complicated systems containing several 

phases, or phases which are connected with other than 
point contacts, little information is available. Wood- 
side and Messmer [6] present measurements for sand- 
stones which are of limited usefulness to the 
modeler due to uncertainties in the properties of 
the constituents. Nozad et al. [7] present useful 
measurements and numerical modeling for un- 
consolidated three-phase systems of which two of the 
phases are granular. The present work represents an 
attempt to treat both consolidated and unconsolidated 
systems using a single formalism. 

2. EXPERIMENTAL APPARATUS 

The thermal conductivity of various samples of 
pressed metal powder was measured using the steady- 
state comparator method. In this method one 
dimensional, steady-state heat flow is induced by 
maintaining a temperature gradient across a stack 
of cylindrical discs contained in a sample chamber. 
Assuming that the heat flux is identical in each disc, the 
conductivity of the unknown disc may be easily deter- 
mined from measured temperature drops and the 
conductivity of a known standard disc. 

The overall apparatus is shown in Fig. 1. The thermal 
comparator cell is contained in a pressure chamber 
fitted to provide various gas pressures from vacuum to 
6.9 MPa (1000 p.s.i.). Temperature drops across the 
sample and the standard disc were obtained using 
miniature thermistors 0.35 mm in diameter, 3 mm in 
length with 0.025-mm-diameter enameled lead wires. 
All thermistors used in these experiments were first 
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NOMENCLATURE 

A surface area Cm*] 6 percent theoretical density (= l-4) 
f function defined by equation (19) ~c k,lk, 
F heat flux [W m-‘1 4 volume fraction. 

k thermal conductivity [W m- * K- ‘1 
n number of phases 
A unit vector Subscripts 

T temperature [K] b brass 
V volume [m3]. i phase 

f fluid 

Greek symbols m matrix 

tl mixing parameter defined by equation (28) vat vacuum. 

calibrated against a standard platinum RTD probe to a 
relative accuracy of 0.01 K using a constant 
temperature oil bath. This high accuracy temperature 
measurement capability allowed smaller temperature 
differences in the stack than is normally acceptable for 
good overall accuracy. 

A schematic diagram of the thermal comparator cell 
is shown in Fig. 2. The stack was positioned in a nylon 
cylinder when the unknown was in powder form. For 
measurement of the 9.5-mm-thick solid discs, the nylon 
was removed and air acted as the radial insulation. 
Heat was supplied by a nichrome heater wire im- 
bedded in the top aluminum disc, and removed from 
the bottom of the brass plug by a cold, temperature- 
regulated fluid circulating through copper coils 
wrapped around the plug. Dow Corning 304 heat sink 
compound was used between disc surfaces to reduce 
thermal contact resistance. 

VENT 

Thermistor placement for discs of low conductivity 

( < 15 W m- ’ K- ‘) was in 0.5-mm-deep grooves milled 
across a diameter on each face of both the unknown and 
standard discs. For discs of higher conductivity, the 
thermistors were inserted in 0.5-mm-diameter holes 
drilled 10 mm deep into the side of each disc. The holes 
were vertically aligned and 0.5 mm from each disc face. 
For measurements using powders, the top thermistors 
were positioned on the faces of the standard disc and 
copper cylinder. 

Materials used for the standard discs were Dynasil 

4000 glass and 304 stainless steel. The former has a 
conductivity of 1.37 W m-l K-’ and was used for 
unknown conductivities below about 15 W m-r K-l. 
The conductivity of the stainless standard was 
measured using the Dynasil disc and determined to be 
13.6 W m-r K-‘. The two discs were used to cover a 
range of conductivities from 0.037 to 113 W m-’ K-l. 
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FIG. 1. Schematic diagram of the experimental apparatus. 



Thermal conductivity of packed metal powders 911 

i 
THERMISTORS (4) 

1, BRASS 

Cu COOLING 

iA co’Ls 

FIG. 2. Enlarged diagram of the thermal comparator cell. Heat 
flow is from top to bottom. 

3. SAMPLE PREPARATION 

All samples tested were prepared from mixtures of 
70/30 brass powder and 316 stainless steel powder. 
Stainless steel powder samples were gas atomized (thus 
approximately spherical) whereas the brass powder 
used was highly angular. Because spherical powders do 
not press well, a different 316 stainless steel powder 
which was more angular was used for the pressed 
samples. 

The solid samples resulted from cold pressing 
various mixtures of the two powders to percent 
theoretical densities (PTDs) ranging from 0.69 to 0.93. 
In order to include thermal conductivity data at a PTD 
of 1.0 (zero porosity), powder samples of each mix were 
hot-isostatic-processed at temperatures just below the 
melt point and pressures above 96.5 MPa (14,000 p.s.i.). 
These discs were found to have essentially zero porosity 
based on a measurement of density. 

4. ESTIMATED MEASUREMENT ERROR 

Measurement errors might be expected to occur in 
this experiment from a number of sources, including 
thermistor drift, radial heat loss, non-uniform contact 
resistance, and transient effects. These errors were 
minimized or eliminated both by careful design of the 
apparatus and frequent experimental checks during 
data acquisition. As a result, the measured values of 
conductivity listed in Table 2 are expected to be 
accurate to within + 10%. This figure was arrived at 
by considering independently the sources of error 
discussed below, and is consistent with measurements 
made on the fully dense disc composed of 100% brass, 

which gave results accurate to within 7% ofthe accepted 
value for brass [S]. 

The major sources of error were determined to be 
non-uniform contact resistance and thermistor drift, 
together accounting for 80% of the stated uncertainty. 
Although the experiment was designed to be insensitive 
to a uniform contact resistance between discs, non- 
uniformity would lead to two-dimensional heat flow, 
thus violating the one-dimensional assumption needed 
for the derivation of the data reduction equations. This 
effect was minimized by the use of heat sink compound 

between all thermal contact paths. However, a 
comparison of measurements made on the same sample 
before and after disassembling the stack showed 
a spread of +5x, which we attribute to contact 
resistance effects. Thermistor drift was checked 
periodically by turning the heater off, and allowing 
the system to equilibrate thermally. The resulting 
temperature difference across a single disc was never 
larger than 0.025 K, and was more typically 0.01 K. 
Coupled with a minimum temperature difference 
across a disc during data acquisition of 0.4 K, this 
implies a maximum error of +7x. A more probable 
value of f3% results from considering more typical 
temperature differences across the discs of > 1.0 K, 
together with some additional allowance for cali- 
bration errors. 

Other potential sources of error were of less 
significance. Uncertainties in thermistor location and 
finite thermistor size effects were expected to introduce 
errors of approximately +2%. Radial heat loss due 
to the natural convection of air around the stack 
was determined to be negligible by comparing a 
measurement of the conductivity of a fully-dense disc 
made under vacuum conditions with another made 
at high pressure. Transient effects were effectively 
eliminated by waiting until the attainment of a good 
steady state. 

5. EXPERIMENTAL RESULTS 

Results for the present measurements are sum- 
marized in Tables 1 and 2. Table 1 contains the thermal 
conductivity of the two metal constituents (determined 
by measurement) and the pore fluids (tabulated in [8]) 
at room temperature. The value for air includes a high 
pressure correction [9] of 5%. Table 2 contains the 
results of porosity and thermal conductivity measure- 
ments on the samples. The fourth and fifth columns are 
the weight percent and volume fraction of the brass 

Table 1 

Material 
Thermal conductivity 

(Wm ) 
-1 K-1 

70130 brass 
316 ss 
Water 
Air or N, 
(p = 2 MPa) 

113 
12.4 
0.6 
0.0274 
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No. 
Sample 

form Fluid 
Weight 
‘A brass k 

Incas k thecar y0 error 

1 disc 
2 disc 
3 disc 
4 disc 
5 disc 
6 disc 
I disc 
8 disc 
9 disc 

10 disc 
11 disc 
12 disc 
13 disc 
14 disc 
15 disc 
16 disc 
17 disc 
18 disc 
19 disc 
20 disc 
21 disc 
22 disc 
23 disc 
24 disc 
25 disc 
26 disc 
21 disc 
28 disc 
29 disc 
30 disc 
31 disc 
32 disc 
33 disc 
34 disc 
35 disc 
36 disc 
37 disc 
38 disc 
39 disc 
40 disc 
41 disc 
42 disc 
43 disc 
44 disc 
45 disc 
46 disc 
41 disc 
48 disc 
49 disc 
50 disc 
51 disc 
52 disc 
53 disc 
54 disc 
55 disc 
56 disc 
51 disc 
58 disc 
59 disc 
60 disc 
61 powder 
62 powder 
63 powder 
64 powder 
65 powder 
66 powder 
67 powder 
68 powder 
69 powder 
70 powder 
71 powder 
12 powder 
73 powder 
74 powder 

air 100 1 0 113 
air 80 0.784 0 61.7 
air 60 0.577 0 36.1 
air 40 0.380 0 24.4 
air 20 0.187 0 17.3 
air 0 0 0 12.4 
vat 100 1.0 0.07 33.89 
air 100 1.0 0.07 36.81 
vat 100 1.0 0.12 31.09 
air 100 1.0 0.12 32.70 
vat 100 1.0 0.18 17.90 
air 100 1.0 0.18 20.51 
vat 100 1.0 0.23 11.74 
air 100 1.0 0.23 13.98 

Hz0 100 1.0 0.23 28.07 
vat 80 0.784 0.08 20.76 
air 80 0.784 0.08 23.20 
vat 80 0.784 0.14 14.88 
air 80 0.784 0.14 17.22 

HP 80 0.784 0.14 29.15 
vat 80 0.784 0.19 12.78 
air 80 0.784 0.19 14.71 
vat 80 0.784 0.24 6.07 
air 80 0.784 0.24 8.15 

Hz0 80 0.784 0.24 16.38 
vat 60 0.577 0.10 12.95 
air 60 0.577 0.10 13.92 
vat 60 0.517 0.15 9.11 
air 60 0.571 0.15 11.28 
vat 60 0.577 0.20 6.65 
air 60 0.577 0.20 8.41 
vat 60 0.517 0.26 4.30 
air 60 0.577 0.26 5.92 
vat 40 0.38 0.11 6.00 
air 40 0.38 0.11 8.00 
vat 40 0.38 0.17 4.90 
air 40 0.38 0.17 6.90 
vat 40 0.38 0.22 3.89 
air 40 0.38 0.22 5.71 
vat 40 0.38 0.27 2.63 
air 40 0.38 0.27 4.21 
vat 20 0.187 0.12 3.78 
air 20 0.187 0.12 5.80 
vat 20 0.187 0.18 2.61 
air 20 0.187 0.18 4.52 
vat 20 0.187 0.24 1.91 
air 20 0.187 0.24 3.54 
vat 20 0.187 0.29 1.39 
air 20 0.187 0.29 2.82 

Hz0 20 0.187 0.29 6.36 
vat 0 0 0.14 2.16 
air 0 0 0.14 4.55 

Hz0 0 0 0.14 6.89 
vat 0 0 0.20 1.72 
air 0 0 0.20 3.38 
vat 0 0 0.25 1.20 
air 0 0 0.25 2.55 
vat 0 0 0.3 1 0.81 
air 0 0 0.31 2.00 

Hz0 0 0 0.31 5.01 
vat 100 1 0.60 0.0369 
air 100 1 0.60 0.212 

Hz0 100 1 0.60 4.76 
vat 80 0.784 0.56 0.043 1 
air 80 0.784 0.56 0.296 
vat 60 0.511 0.53 0.0473 
air 60 0.577 0.53 0.316 
vat 40 0.38 0.49 0.0424 
air 40 0.38 0.49 0.294 
vat 20 0.187 0.45 0.0666 
air 20 0.187 0.45 0.332 
vat 0 0 0.42 0.0588 
air 0 0 0.42 0.331 

H,O 0 0 0.42 3.25 

41.6 29 

29.5 -10 

18.0 - 12 

10.96 -22 
24.9 -11 

25.44 10 

15.97 -1 
30.5 5 

10.83 -26 

7.12 -13 
18.0 10 

14.56 5 

9.5 -16 

7.31 -12 

4.26 -28 

9.03 13 

6.43 -1 

4.29 -25 

2.98 -30 

5.78 0 

3.80 - 16 

2.52 -29 

1.65 -41 
7.01 10 

3.19 -30 
8.04 17 

2.07 -39 

1.36 -46 

0.75 -62 
4.47 -11 

0.233 -14 
4.29 -10 

0.248 -16 

0.252 -20 

0.27 1 -8 

0.292 -12 

0.275 - 17 
3.21 -1 
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FIG. 3. Measured thermal conductivity of four pure stainless 
discs as a function of air pressure (PTD = percent theoretical 

density). 

component, exclusive of voids. The sixth column gives 
the sample porosity. In the last three columns are 
listed the measured conductivity, a theoretical value 
determined from a model to be detailed later, and the 
percent discrepancy of the theoretical value from the 
experimental. 

Note that, in Table 2, values obtained using air as the 
saturantareonlyreportedforapressureof2MPa,since 
only these values are of interest for modeling purposes. 
This conclusion follows from the fact that data for lower 
pressures would include effects due to ‘molecular’ 
conduction, because of the small pore sizes of samples 
used in this work [S]. In this regime, the effective 
conductivity of the fluid would vary spatially, depen- 
ding on the gap width between metal surfaces. Such 
effects cannot be easily modeled by assuming a 
fluid of uniform conductivity. Nonetheless, measure- 
ments on most of the samples tested were made at a 
number of different pressures between vacuum and 2 
MPa. Typical results are shown in Fig. 3 for four pure 
stainless steel discs of varying PTD. The shapes of the 
curves are similar to that reported by Woodside and 
Messmer [S]. Although these curves could be used to 
compute average pore size [S], that quantity was not of 
interest in this work. 

In addition, vacuum measurements were made on six 
discs of identical composition and porosity. This was 
donepartlyas acheck on measurement reproducibility, 
and partly to provide some estimate of the statistical 
sample-to-sample variation. The discs chosen were 
20% brass with a porosity of 0.24. Measured thermal 
conductivities varied from a low of 1.91 W m- ’ K- 1 to 
a high of 2.09 W m-’ K-l, a spread of &S%. Thus 
sample uniformity was found to be better than the 
resolution of the measurements. 

6. THEORY 

6.1. Basic volume averaging formalism 
Here we review the basic formalism of volume 

averaging [lo, 1 l] in order to clarify notation and for 

the sake of completeness. We consider a multiphase 
mixture containing n phases, and construct an aver- 
aging volume which is large compared to the small- 
scale deviations in volume fraction of each component, 
but small enough so that all field variables (in this case 
temperature) vary only slightly over the volume. The 
shape of the averaging volume is assumed to be 
arbitrary and not to affect the results of any averaging 
operation. We associate with each averaging volume a 
point (which we denote the ‘center’) which shall serve to 
locate the volume with respect to the multiphase 
medium. Thus, spatial derivatives of volume-averaged 
quantities may be defined as the change in that quantity 
per unit distance movement of the averaging center, 
with the shape and orientation of the averaging volume 
fixed. 

We now define the phase average of the field variable 
T over phase i as 

TdV (1) 

where 6 is the volume of phase i contained within the 
averaging volume K Likewise the intrinsic phase 
average is defined by 

TdK 

In addition, we define a global average by integrating 
over all phases within V : 

Examination of equations (1) and (3) shows that 

CT) = fl CT). 

(3) 

Taking the gradient of each term in equation (4) and 
using the spatial averaging theorem of Slattery [12] to 
transform averages of gradients into gradients of 
averages produces 

V(T) = it1 <vT)-i$I ; j TA, dA, (5) 
40 

where AiO is the bounding surface of phase i, with the 
exclusion of that portion coincident with the surface of 
the averaging volume, and Ai is the outward unit 
normal. Since each element of surface area between the 
phases occurs in two integrals with oppositely-directed 
normals, and since the temperature is continuous 
across all boundaries, all the integrals in equation (5) 
cancel. Thus we are left with 

V(T) = f (VTJ. (6) 
i=l 

Now, the heat flux within phase i is given by 

F, = -xiV7: (7) 

Volume averaging equation (7), and defining a global- 
averaged heat flux in a similar manner to that of 
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temperature, gives 

(F) = t (F,) = - f: zi(V7;). (8) 
i=l i=l 

We then define an average thermal conductivity for the 
mixture through the relation 

(F) =-XV(T), (9) 

which leads immediately to 

XV(T) = i Xi(VT). (10) 
i=l 

Since intrinsic averages of intensive variables such as 
temperature correspond more closely with measure- 
able quantities than do phase averages, we rewrite 

equations (6) and (10) to produce the final working 
equations 

V(T) = f 4i(vT)i (11) 
i=l 

TV(T) = i gJi’i;i(v~)i. (12) 
i=l 

Equations (11) and (12) are quite general, but pre- 
sent a closure problem, since for n phases we have 
two equations and (for scalar conductivities) n+ 1 
unknowns. Thus, the specification of different closure 
schemes will produce different mixture models con- 
sistent with the assumptions used to derive (11) and (12). 

6.2. Two-phase systems 

We next specialize equations (11) and (12) to the case 
of a two-phase system consisting of a porous material 
filled with pore fluid. If 4 is the porosity of the porous 
matrix, then we have 

V(T) = ~(VT,)‘+(1-&<VT,)” (13) 

;V(T) =4(VT,)‘+k(l-$)(VTm)“, (14) 
f f 

where ‘f’ and ‘m’ refer to fluid and matrix, respectively, 
and all thermal conductivities are assumed to be 
scalars. We now need one additional equation in order 
to close the system described by equations (13), (14). It 
is instructive to consider some simple choices for clos- 

ure. For example, if we choose 

(VT,)’ = K(VT,)“‘, (15) 

then we recover the formula for two materials in series 
relative to the direction of heat flow : 

k 

k,=c$K+Kl-c#. 
(16) 

This formula represents the lowest possible mixture 
conductivity for a given porosity. On the other hand, if 
we use the closure relation 

(VT,)’ = (VTm)m (17) 

then we recover the parallel formula 

$=Cj+(l-$)K, (18) 
f 

which represents the highest possible mixture con- 
ductivity. Consequently, any mixture model which 
depends only upon 4 and K may be represented by the 
general closure relation 

<VT,)’ = {f‘(K> $)+Kc1 -f(K, 4)I}<VK,)m, (19) 

where the values of the function f range between zero 
and unity. 

Two special systems were treated long ago by 

Maxwell [13] and merit examination at this point. The 
first is a dilute suspension of spherical particles in an 
infinite uniform fluid. For this system the mixture 
conductivity is 

k 24 + K( 3 - 24) 

G,= 3-$+K4 . 
(20) 

One may easily verify that this formula (which we will 
call the ‘lower Maxwell’ formula) is obtained by the 
closure choicef = 2/3. The second system, asolid body 
containing a dilute ‘suspension’ of fluid-filled voids, 
possesses a mixture conductivity (designated here the 
‘upper Maxwell’ formula) 

k 2K2(1-$)+(1+2~)K 

k,= (2+4)K+1-4 . 
(21) 

One may verify that equation (21) is obtained from the 
closure choice 

f=2K. 
2Kf1 

Hashin and Shtrikman [14] have shown that the two 
Maxwell formulas (20) and (21) are the most stringent 
upper and lower bounds for homogeneous, isotropic, 
two-phase mixtures. For this class of mixtures we may 
thus further restrict the values off to be 

2 2K 
-<f<- 
3 2Kf1 

(23) 

The lower Maxwell formula (20) was derived by 
assuming that the solid spheres were too far apart to 
interact in any way, and thus is only valid in the limit 
4 + 1. Numerous attempts have been made to ex- 
tend Maxwell’s calculation to higher orders of (1 - 4). 
Considerable success has resulted for the case of 
periodic arrays of spheres [15-171 but for random 
suspensions the success has been much more limited. 
After expending considerable effort, Jeffrey [lS] pro- 
duced a formula valid to second order in (1 -d), but 
the complicated analysis he used offers little hope of 
extending the calculation to higher orders. Conse- 
quently, a semi-empirical approach is taken here, by 
examining possible closure schemes. 

Considerable insight into possible choices for the 
function f for real materials may be gained by 
examining the limit K -+ co of some of the preceding 
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formulas. In this limit the matrix conductivity may be 

thought of as approaching infinity while the fluid 
conductivity remains constant. As long as the matrix 
is noncontiguous, it is obvious that the mixture 
conductivity must approach a constant, since the fluid 
conductivity limits that of the mixture. Once the matrix 
becomes contiguous, however, the mixture conductiv- 
ity must increase without bound, being proportional to 
k,, or K. This limiting behavior is evidenced by the 
Maxwell formulas, for which 

lim t = 2K 1-4 
K-CO f “M Tq’ 

(24) 

(25) 

We next examine the mixture result obtained from the 
averaging theory with arbitrary f : 

k 6f+KU-dJ.f) 
k,= 1-+(1-_f)+K+(1-.ff)’ 

(26) 

For f = f(d), equation (26) has the limit 

k l-4f 
::k,=qql-fj 

(27) 

In addition, the value of this limit is monotone 
increasing with 1: Thus, it appears that a suspension of 
particles which do not touch may be approximately 
modeled by using a function f which is independent of Ic 
and monotone increasing with 1 - r#~ starting from the 
value 2/3. Unfortunately, not enough data exists in this 
regime to allow even a guess at the proper functional 
form. 

As the porosity of a suspension decreases, a point 
will be reached at which the solid particles touch. These 
so-called ‘granular’materials occur often in nature, and 
numerous efforts have been made to model the 
conductivity of such materials. Good reviews of this 
former work have been provided by Woodside and 
Messmer [S]. In a more recent paper, Batchelor and 
O’Brien [ 193 have modeled granular systems by adding 
on a term representing the ‘contact’ contribution to 
obtain the total mixture formula. We intend to adopt a 
similar approach here, by combining an expression 
appropriate to conduction through a contiguous solid 
(the upper Maxwell formula) with one appropriate to a 
suspension of particles [equation (26) with f = f. and 
f. > 2/3]. Thus we model a two-phase system where 
the solid phase is connected with the formula 

;=(l-a) bfo++-4fo) 
f 1 --+(I -fo)+ K&l -fo) 

where tl and f. are to be determined. The parameter f. is 
expected to be approximately constant for a contiguous 
solid, whereas c( will depend strongly on what may be 
called the ‘degree of consolidation’. For granular 

systems c( is small and the first term in (28) is dominant 
for moderate values of K. For consolidated materials, 
however, CI is moderate and the second term may be 
dominant over most of the range of K. The validity of 
equation (28) will be checked against available data in a 
later section. 

6.3. Three-phase systems 
Here we take n = 3 in equations (11) and (12) to get 

V(T) = ~I(VT,)‘+~,(VT,)~+~,(VT,)~ (29) 

kV<T) = k,~,(VT,)‘+k,~,(VT,)2+k,~,(VT,)3 

(30) 

where, as before, the conductivity has been reduced to a 
scalar. We next proceed to show that the three-phase 
system described by (29) and (30) can be formally 
decomposed into two two-phase problems, each 
requiring a single closure relation. Once this has been 
established, the methods developed in the previous 
section may be utilized in the solution of three-phase 

problems. 
The decomposition proceeds by defining an inter- 

mediate temperature gradient and conductivity by 

<VT,)‘(~,+$,) = ~,<VTI)‘+~Z(VT~)~ (31) 

ki<V~i)‘(~,+~,) = k,~,(VT,)‘+k,~,(VT,)2. 

(32) 
Clearly, equations (31) and (32) describe a two-phase 
problem identical in form to equations (13) and (14) 
with porosities 

4i 
4; = ~1 +b2, i = 1,2. (33) 

The remaining equations become, with (31) and (32) 
inserted, 

V(T) = (41 +~2KVT)i+4,W7i)3 (34) 

kV<T) = kdd, ++&VK)i+k363<VT,>3. (3-5) 

Thus we see that components 1 and 2 have been 
combined into an intermediate component with 
conductivity ki and porosity bi +$2. The latter then 
forms a two-phase system with component 3 as shown 
in equations (34) and (35) in a manner which is formally 
identical to that ofequations (31) and (32). Thus we have 
succeeded in formally decomposing the three-phase 
problem described by equations (29) and (30) into two 
two-phase problems, each of which requires a single 
closure relation. 

The above procedure demonstrates that the 

intuitively appealing idea of decomposing the three- 
phase problem into two two-phase problems is in fact 
rigorous, provided the two-phase problems are solved 
properly. The usefulness of this procedure thus depends 
entirely on one’s ability to solve the two-phase 
problems. Ajudicious choice ofpairing ofphases is then 
that for which the resulting two-phase problems are as 
familiar and tractable as possible. For example, a 
granular mixture consisting of two solid constituents 
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should be decomposed by dealing first with the two 
solids and then the equivalent granular problem, since 
the latter is a familiar one which has a significant data 
base. This, in fact, is the approach we shall follow in 
attempting to model the three-phase experiments 
discussed in this paper. 

Other applications appear to be possible for the 
three-phase decomposition presented here. Granular 
materials with thin oxide layers could be modeled by 
dealing first with the effect of the oxide coating on the 
matrix material. This might be treated by assuming the 
oxide to be in series with the matrix (since any heat 
flowing through the matrix must of necessity flow 

through the oxide layer). The conductivity of a granular 
material containing small amounts of water might also 
be amenable to treatment, since the water is known to 
reside in the immediate vicinity of grain contact points. 
The same formalism is of course generalizable to more 
than three phases so long as the constituent two- or 
three-phase component problems are solvable. 

7. THEORETICAL COMPARISONS 

7.1. Comparison with present three-phase data 
Modeling of the data presented in this work will 

begin by attempting to represent the two metals 
by a single phase with an effective conductivity, as 
mentioned above. This then constitutes the first two- 
phase problem of the decomposition. To aid in this 
effort, we first plot the data for the consolidated discs vs 
percent theoretical density (PTD) in Fig. 4. The latter 
quantity is also designated by the symbol 6 and is 
defined as the ratio of the average sample density to the 
average matrix density. From this definition, neglecting 
the density of air, it follows that 

6 = l-4, (36) 

where C$ is the sample porosity. Each curve in Fig. 4 
corresponds to a particular mixture of the two metal 

FIG. 4. Measured thermal conductivity of solid discs. Each 
curve corresponds to fixed weight percent of brass. 

constituents. Useful information may be obtained from 
Fig. 4 by considering the ratio of the conductivity at 
some brass volume fraction C& to that for pure brass at 
the same value of 6. This ratio has been plotted in Fig. 5, 
and serves to aid in the choice of a model for the mixture 
conductivity of the metal phases. The uncertainty is 
large for the points plotted, because they represent the 
ratio of two measured values. Nonetheless, it is clear 
that the fully consolidated (6 = 1) discs do not follow 
the same mixture model as do the discs with lower PTD. 

Theoretical predictions for the mixture using 

different closure models are shown in Fig. 5. The two 
solid lines are the upper and lower Maxwell curves 
discussed in Section 6. The upper curve results from the 
choice 

and the lower from f= 2/3. [Both curves were 
obtained using equation (28) with c( = 0.1 The dotted 
line is a simple linear weighting, equivalent to f = 1.0. 
The present data illustrates well the remarks made by 
Hashin [20] to the effect that a single formula 
depending only on void fraction and constituent 
properties may not be expected to reproduce all 
experimental results. Although the present data is not 
of sufficient accuracy to unambiguously distinguish 
between models, it appears that the fully dense data 
more closely follows the lower Maxwell curve, and the 
data at 6 = 0.75 corresponds approximately with the 
upper Maxwell curve. The best attempt at a model 
would therefore seem to be a simple parameterization 
for f of the form 

f = min 
0.948 

1.605 -0.9386 

which is chosen to give f = 213 at 6 = 1, and f = 0.948 
at 6 < 0.7. The cutoff at f = 0.948 occurs because the 
upper Maxwell curve is known to represent a maximum 

for homogeneous and isotropic systems. 
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FIG. 5. Measured thermal conductivity of a solid disc of 
arbitrary composition relative to that of a pure brass disc with 
the same PTD. The two solid curves are the two Maxwell 

formulas. 
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The closure choice (38) thus specifies the result of the 
first two-phase problem, giving an effective metal 
conductivity for all samples tested. Note that results 
from the powder mixtures have not been included in the 
analysis thus far. This is because, for the powders, effects 
due to changing contact areas far outweigh effects due 
to changes in matrix conductivity. Thus the mixture 
model for the powder will be assumed to be the same as 
for the low PTD discs, i.e. f = 0.948. 

Having an effective matrix conductivity model, we 
now turn to the second two-phase problem, that of the 
porous solid. We will model this problem using 
equation (28) with values for tl andf, determined from 
experiment. We see that the use of vacuum as a pore 
fluid corresponds to K -+ co in equation (28). Thus the 
conductivity at low gas pressure is predicted from (28) 
to be 

Thus a measurement of conductivity made with pore 
pressures low enough to eliminate the influence of the 
pore fluid will provide a value for CL Figure 6 shows 
values of C.Y obtained from equation (39) plotted vs 6 
(PTD). It thus appears that, for the samples tested here, 
a depends primarily upon material porosity and is 
approximately independent of other parameters such 
as particle shape or brass volume fraction. (Of course, 
the influence of particle shape may be implicitly 
included by its effect on porosity.) Whether the curve 
shown is valid for other systems remains to be 
determined. 

Values of CI for the consolidated discs are seen to lie 
below 0.4 even for values of 6 as high as 0.92. 
Apparently, even in these highly compressed samples, 
heat flow paths are significantly affected by the 
remaining voids. Data for the powders shows clearly 

6 (PTDI 

FIG. 6. Values of the consolidation parameter a determined 
from experimental measurements of evacuated samples. The 

curve represents an approximate fit. 

the important effect of particle contact. Powder mixes 
containing higher brass volume fractions packed to the 
lowest PTDs and possessed lower thermal conductiv- 
ities, even though the matrix value for brass 
is over nine times that of stainless steel. This is 
presumably because the highly angular brass particles 
offer a lower number of contact points, or equivalently, 
a lower contact surface area than the mostly spherical 
stainless steel particles. Values for c( thus range over 2.5 
orders of magnitude, and seem to comprise a 
reasonably well-defined curve for both solids and 
powders. In the comparisons with experiment that 
follow, tl will be determined from the curve shown in 
Fig. 6, even for data obtained from previous work. It is 
probable, however, that predictions for consolidated 
materials other than the type of packed metal powders 
presented here, would require separate vacuum 
measurements in order to determine the parameter cc 
This follows from the fact that the theory can be 
sensitive to this parameter, which, because it mirrors 
the effectiveness of particle contact, cannot always be 
predicted a priori. 

The remaining parameter f0 needed to complete the 
model is best determined from measurements made 
using a higher conductivity pore fluid such as water. In 
this case K is moderate and the influence of the second 
term in equation (28) is reduced so that maximum 
sensitivity to f0 is obtained. For the eight samples which 
were measured using water as the pore fluid, f0 was 
found to range from 0.8 for stainless steel samples to 0.9 
for pure brass samples. It is not understood why the 
angular brass particles should require a higher value of 
f0 than the more spherical stainless steel. However, 
these eight results were fit to within an average error of 
f 9% using the simple linear formula 

f0 = 0.8+0.1+,. (40) 

Comparisons between experimental values presen- 
ted in this work and the present theory [with 
parameters as specified in equations (38) (40) and Fig. 
61 are given in Table 2 with water and high pressure air 
as the pore fluids. The model fits the data to within an 
average error of f 18%. If, instead of using the curve in 
Fig. 6, a unique value of c( is determined from equation 
(39) for each sample, the average error drops to k 167;. 
Alternatively, the replacement of equation (40) by a 
constant value of 0.9 for f0 increases the error to k 20%. 
In general, c( is the most sensitive parameter in the 
theory, as it scales the matrix conduction component. 

7.2. Comparison with previous two-phase meusurements 

The usefulness of a mixture theory such as the one 
presented here lies in its applicability to diverse systems 
which may differ from each other in certain aspects. 
Such a comparison may often reveal the importance 
of variables otherwise thought to be unimportant. 
Consequently, the present theory has been used to 
predict the results for a wide variety of measurements. 
For convenience, the large number of two-phase 
experiments compiled and catalog&d by Crane and 
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Vachon [21] was chosen for comparison. These 
authors compared six different theories (including their 
own) with this body ofdata, thus making it an ideal test 
for the present model. Whereas Crane and Vachon’s 
results were obtained by fitting the data with an 
unknown function of K and 4, we have relied entirely on 
parameter values obtained from experiments described 
in this paper. Thus, values of a were taken from the 
curve in Fig. 6, with the identification 6 = 1 - 4. For 
simplicity we have set f0 = 0.8, a value consistent with 
spherical particles. The results are shown in Fig. 7 as 
theoretical values plotted against measured values. In 
addition to the experiments compiled by Crane and 
Vachon, the present two- and three-phase data have 
been included as well, so that this comparison includes 
values of thermal conductivity ranging over nearly 
three orders of magnitude. The parallel lines represent 
20% deviations from unity. Overall, the comparison 
with Crane and Vachon’s list of data is fair, giving an 
average error of k 29%. The worst agreement occurs 
with the data of Kannaluik and Martin [22] for which 
the theory consistently overpredicts the measured 
values, sometimes by as much as a factor of 3. Further 
examination of Kannaluik and Martin’s, data reveals 
that their measurements were made on fine powders 
with the pores containing gases at atmospheric 
pressure or below. As these authors point out, 
molecular conduction effects are expected to have been 
present, particularly for the cases involving hydrogen 
gas, which should require special theoretical treatment. 
Consequently, we would expect Kannaluik and 
Martin’s data to be overpredicted by simple two-phase 
models, and therefore it should not have been included 
in Crane and Vachon’s list. Fountain and West’s data 
[23] offer an extreme example of the same problem, and 
have not been considered at all in the present 
comparison. It is not clear to this author whether Crane 
and Vachon included them in their modeling attempts, 
though the data were listed and referenced. The 
exclusion of Kannaluik and Martin’s data from the 

FIG. 7. Thermal conductivities determined from the present 
model vs measured values for a large sampling of previously 
published two-phase data as well as the present three-phase 

data. 

present comparison then reduces the average error to 
f 22x, not substantially greater than that encountered 
when modeling the data presented in this work. It is also 
very close to the figure of f21°? published by Crane 
and Vachon for their model, although whether this 
figure would have improved had they omitted 
Kannaluik and Martin’s data is unknown. 

7.3. Comparison with other numerical calculations 
Another useful comparison may be made between 

the theory presented here and the numerical cal- 
culations of Nozad et al. [l] for two-phase granular 
materials. Nozad’s calculations model the granular 
material as a periodic array of matrix blocks connected 
by slender ‘bridges’ of matrix material. For a bridge 
area equal to 2% of the block area these authors find 
good agreement with the majority ofpublished data, as 
shown in Fig. 8 (reprinted from ref. [ 11). (Most of the 
data shown in Fig. 8 are represented in Crane and 
Vachon’s list.) Since the parameter c( defined in the 
present work represents the fraction of heat conducted 
through matrix contact only, one would expect there to 
be a relationship between c( and the relative ‘bridge’area 
fraction of Nozad et al. That this appears to be the case 
may be seen in Fig. 8 where the present theory with 
TV = 0.02 (appropriate for 4 = 0.38) produces a curve 
remarkably close to Nozad’s throughout the range of k 
values. Although the exact agreement between the two 
parameters is probably fortuitous, the close corre- 
spondence between the calculations does help 
illuminate the basis of the present model. 

8. CONCLUSIONS 

In this paper we have presented both data and a 
theoretical model for the thermal conductivity of a 
consolidated mixture of metal powders. Although the 
literature abounds with data for two-phase granular 
systems (a single matrix material), data for three-phase 
systems is virtually nonexistent for cases where the 
constituent properties are well known. In addition 
there is little data available for two- or three-phase 
consolidated materials made up of well-characterized 
constituents. Herein we have presented data for such 
systems, where the percent theoretical density was 
varied in a systematic way from the lowest value which 
rendered the sample machinable to the highest value 
attainable with the available press. Mixture fraction of 
the two metals was also varied in stages, thus giving a 
useful parameter matrix for study. 

We have applied the technique of volume averaging 
to produce two basic working equations applicable to 
the general problem of thermal conduction through 
mixtures. Several simple closure relations were 
examined (some of which yield well-known mixture 
models) until one was found which is useful in the 
modeling of two-phase granular mixtures. The more 
complex three-phase problem was shown to reduce 
formally to two two-phase problems (in agreement with 
one’s intuition) together with three undetermined 
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functions. These functions were determined by 
measurements made with evacuated samples, and 

samples saturated with water. Predictions were then 
made for 38 samples containing either water or high 
pressure air, so that they do not represent fits of these 
functions, but (except for the eight water-saturated 
measurements) are clear predictions employing no 
adjustable parameters. The data presented here was 

then modeled to within an average error of + 18%. 
In order to test the usefulness of the present theory, 

comparisons were made with a large body of two-phase 
data compiled by Crane and Vachon [21]. For these 
comparisons no changes were made in the values of the 
closure functions or the parameter a from those values 
predetermined by the present data. With the exclusion 
of Kannaluik and Martin’s data, the predicted values 
for over 140 data points were within an average spread 
of f 22% of measured values. Thus we have presented 
a useful theory which is capable of predicting the 
conductivity of both two- and three-phase systems, 
whether granular or consolidated. 
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Rc. 8. Comparison of the present model with the numerical calculations of Nozad et al. [l] and previous two- 
phase data. 
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CONDUCTIVITE THERMIQUE DE POUDRES METALLIQUES COMPACTEES 

Resume~On presente a la fois les experiences et le modele thtorique pour la conductivite thermique d’un 
melange consolide de deux poudres metalliques. Les mesures sont faites sur des echantillons de differentes 
fractions volumiques de melange jusqu’a 90% de la densite theorique, en utilisant lair ou l’eau comme 
saturant. On applique la technique de la moyenne par le volume pour obtenir des equations utilisables 
pour le probltme general de la conduction thermique a travers des melanges. Les previsions obtenues a 
partir des equations montrent un bon accord avec les donntes diphasiques publiees dans plusieurs sources. 

DIE WARMELEITFAHIGKEIT VON VERDICHTETEN METALLPULVERN 

Zusammenfassung-In dieser Arbeit werden sowohl experimentelle Ergebnisse als such ein theoretisches 
Model1 fur die Warmeleitfahigkeit von verdichteten Mischungen aus zwei Metallpulvem vorgestellt. 
Messungen wurden an Proben von Mischungen unterschiedlicher Volumenanteile durchgeftihrt, wobei die 
Verdichtung von losem Pulver bis zu 90% der theoretischen Dichte reichte. Sowohl Luft als such Wasser 
wurde als Sattigungsmittel benutzt. Die Technik der Volumenmittelung wurde angewandt, urn Gebrauchs- 
gleichungen zu entwickeln, die auf generelle Probleme der Warmeleitung durch Mischungen angewendet 
werden kiinnen. Berechnungen, die mit diesen Gleichungen angestellt wurden, zeigten eine gute Uber- 

einstimmung mit veriiffentlichten Zweistoff-Daten aus den verschiedensten Quellen. 

TEIUlOI-IPOBO~HOCTb IIJIOTHbIX METAJIJIW9ECKHX IIOPOIIIKOB 

AHHOTa4Hn-npCnCTaBneHbI 3KCnepHMeHTanbHbIe H3Mep‘?HHR H TeOpeTAYeCKaK MOAenb TenAOnpOBOA- 

HOCTM ynnoTHeHHoP wecsi nsyx MeTannmecKHx nopom~oe. ki3Mepemr nposeneHbr Ha o6pa3qax c 

paJnWIHb,M 06l.eMHbIM COnepxaHHeM KOM"OHeHTOB "pH ylIJlOTHeH&i~X B AHatIa3O"e OT CbIIIyWrO 

"OpOWKa A0 3HaYeHAti,AOCTllraK)"WX 90% OT MaKCUManbHO B03MOmHOfi IUIOTHOCTU IIpPl HCnOJIb30Ba- 

HIiIi B KaWCTBe HaCbIIUaHJIUeTO BeIWCTBa BO3A,‘Xa Ei BOAbI. h’kTOAkiKa 06LeMHOrO OCpeAHeHAX IIPHMCH- 

,ICTCIl DR BbIBOAa ypaBHeHP&RCIIOnb3yeMbIX B o6mefi 3aAa9e TeIUIOIIpOBOl,HOCTH B CMeCRX.PaCWTbl, 

"pOBeAeHHbIe n0 3TRM YpaBHeHHRM, IIOKa3anll XOPOEWZ COOTB’ZTCTBIle C AaHHbIMH MHOI-NX aBTOpOB. 


